
Specification Grade Sealed Downlights

for Your Most Challenging Applications

The Downlights You Need to Seal Any Deal

Avoid the headache of downlights that don't live up to your demanding applications. Kenall's modular downlights are designed to stay tightly sealed and perform efficiently for years in a variety of environments, including areas where damp and wet location listings just aren't enough.

One simple, modular design accommodates both regressed and flush lens trim options, and Ingress Protection is an integral part of the design — so there are no surprise upcharges.

Now available with Tunable White LED and Indigo-Clean® technologies, Kenall's downlights are tailored to fit the needs of the most challenging applications, including hospitals and clinics, behavioral health facilities, cleanrooms, containment areas, food and pharmaceutical processing areas, transportation, transit and other public spaces, military installations and educational facilities.

Table of Contents

Construction	
Technology Options	5
New! Tunable White Technology	5
Indigo-Clean and ICT	6
Sealed Regressed Lens Downlights	8
Sealed Flush Lens Downlights	16
Buy American Act	24
Listings and Testing	25
Kenall Markets	26

Healthcare

Behaviorial Health

High Abuse

Food Processing

Transportation

Sealed Enclosure

Avoid the Headache of Failed Seals... Specify Kenall Sealed Downlights

Cracked Lens

Ingress of Moisture

Ingress of Mold

Ingress of Dust

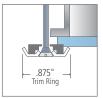
Ingress of Bugs

One Simple Modular Design, Two Lens Types

The Flexibility You Need with NO Hidden Costs

The modular design of these downlights incorporates Ingress Protection at no additional cost and, for specific applications, can be specified with either regressed or flush lenses. Then your downlights ship in two phases. The result? Your lighting project is completed on time and within budget.

Sealed Regressed Lens



Trim Detail

Kenall's sealed, regressed lens downlight features a narrow trim ring, which makes it ideal for architectural applications that value a sealed fixture while providing ample illumination and reduced glare. The fixture is ideal for healthcare facilities, restaurants and commercial kitchens.

Sealed Flush Lens

Trim Detail

Kenall's flush lens downlight is designed for extreme environments, including those where accidental damage or vandalism are common. The fixture is ideal for behavioral health facilities, schools and public spaces, canopies and soffits.

Two-Phase Shipping, Easy Installation.

This downlight series ships in two phases. The rough-in frame can be installed first and is designed to fit various ceiling thicknessness. Then the trim housing section can be installed once the ceiling is finished; torsion springs or captive fasteners provide a positive seal to the ceiling surface.

Tune Your Lighting to Your Needs

What Is Tunable White Technology?

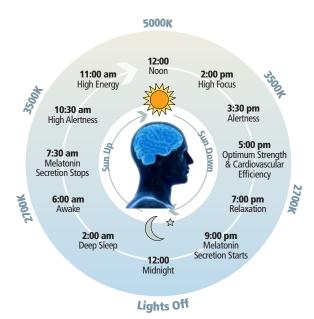
Tunable white technology enables the user to independently control both color temperature and intensity of light within a given application. This provides the ability to change the color of light from warm to neutral to cool in appearance, over time, based on the needs of the occupant or the space.

Recent studies on health, productivity and comfort suggest that the ability to tune the color temperature of light based on application, event need, or occupant preference yields significant benefits.

Kenall combines our white color tuning with dimming to provide even greater flexibility in adjusting the ambience of these spaces:

- Healthcare
- Education
- Cleanroom & Containment

- Correctional
- High Abuse
- Behavioral Health


Controls

The key to achieving the perfect balance of color and intensity of light is the use of appropriate controls. Kenall offers a choice of 0-10V Dimming or Digital Addressable Lighting Interface (DALI), for more sophisticated capabilities. Both options provide the ability to interface with your choice of building automation systems. For your convenience, Kenall's tunable white products are compatible with a wide range of controls; from the simpler Pico and EcoSystems® to the more sophisticated Fresco™ system. Consult factory regarding specific controls compatibility.

The Primary Benefit of Tunable Lighting: Circadian Entrainment

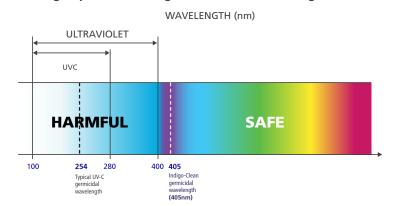
Scientific studies have shown that when indoor light mimics the warm-to-cool cycle of natural daylight, people receive a number of benefits, including a more restful night's sleep and greater alertness during the day. This circadian entrainment is especially beneficial for those who do not have access to natural daylight, such as shift workers, office workers, hospital and nursing home patients, and correctional inmates.

Natural Light Simulation

This icon indicates that the luminaire can be specified with Tunable white technology.

Kill C.diff and Prevent It From Spreading

Indigo-Clean® MDLIC6 is a dual-mode luminaire utilizing a dual-technology occupancy sensor that provides an effortless transition between white ambient mode when the room is in use, and Indigo disinfection mode when the room is not. MDLIC6 provides clinical grade control of *C.diff** and is ideal for patient bathrooms, helping to prevent harmful bacteria from spreading to the patient room.



How Indigo-Clean Works

- The 405nm light targets bacteria and produces intracellular Reactive Oxygen Species (ROS).
- Similar to bleach, these ROS kill the bacteria and prevent it from repopulating the space.
- The 405nm light emitted from Indigo-Clean Technology reflects off of walls and surfaces.

Visible light spectrum showing the active element in Indigo-Clean

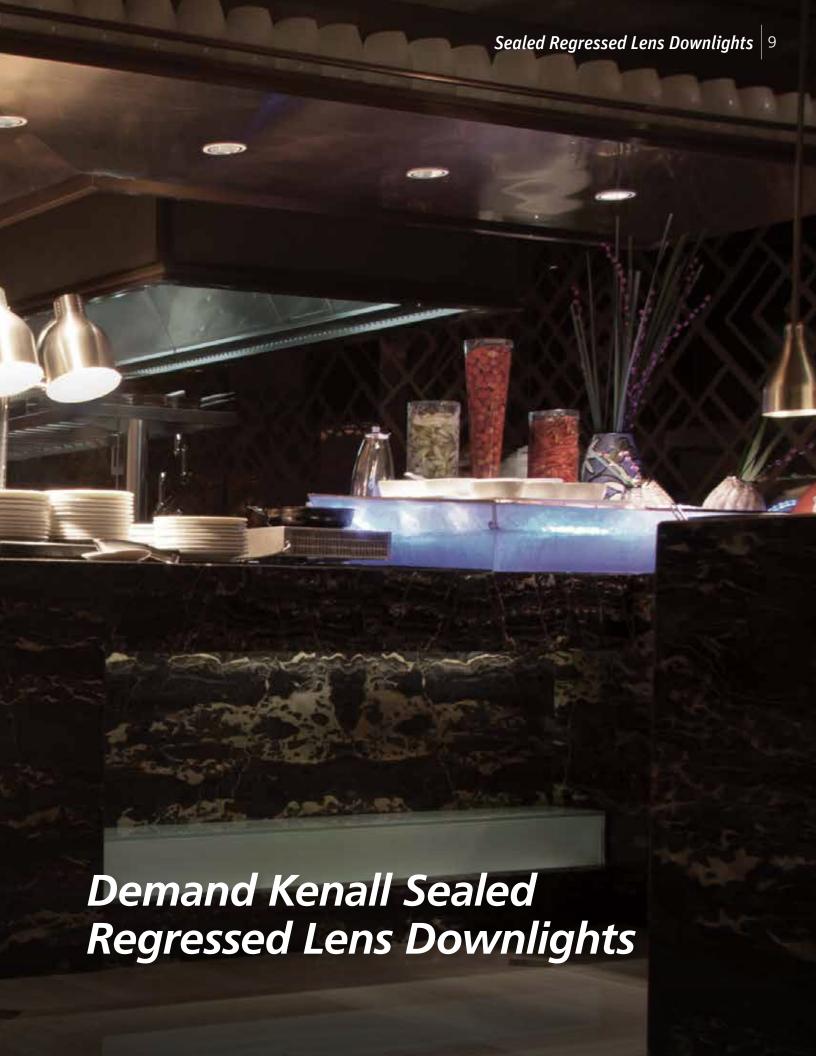
MDLIC6 switches to white disinfection mode when the room is occupied.

^{*}Antimicrobial Activity of a Continuous Visible Light Disinfection System by Rutala, et. al, ID Week 2016. Contact manufacturer for additional claim information.
** SGS Lab Report# - 09S17053798. Contact manufacturer for a copy of this report.

Create a Cleaner, Safer Facility with On-Demand Environmental Disinfection

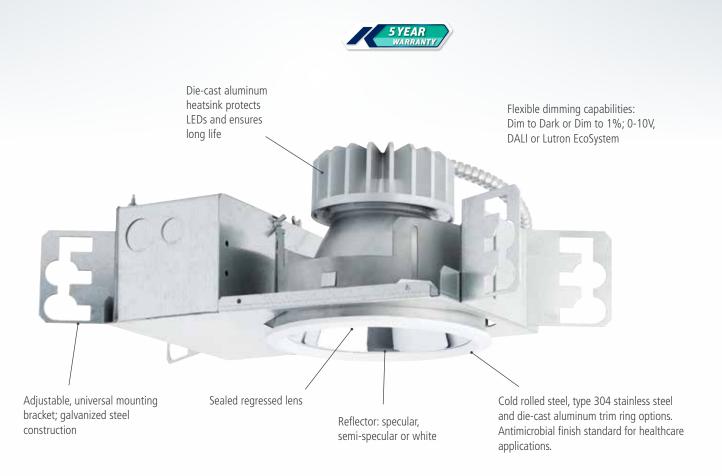
Kenall's sealed downlight series offers several options tailored to your space, including the ability to add Indigo-Clean Technology, a patented, state-of-the-art technology that safely kills harmful bacteria such as Staph*, including MRSA**. This revolutionary new technology combines white light with 405nm indigo light to provide on-demand disinfection with the flip of your lighting switch.

This icon indicates that the luminaire can be specified with the Indigo-Clean Technology option.


- * Per independent lab report #SG5-09S16076094. Contact manufacturer for a copy of this report.
- ** Antimicrobial Activity of a Continuous Visible Light Disinfection System by Rutala, et. al, ID Week 2016.

Which Product Should I Choose?

Indigo-Clean Continuous Environmental Disinfection	ICT Indigo-Clean Technology
Continuous Environmental Disinfection that provides ambient light in blended white mode	LED luminaires that use Indigo-Clean Technology to provide on-demand disinfection
Dual mode: indigo-only and blended indigo and white LED	Single mode: blended white LED
Designed for use in acute patient-care areas of healthcare facilities	Designed for use in a wide variety of applications



Expertly Designed with Kenall's Signature Features

Kenall's streamlined downlight design includes many of the signature Kenall features you've come to rely on to make installation and maintenance fast and easy, while also ensuring a long LED life.

Suggested Applications

Food Service

Commercial Kitchens

Providing Exceptional Performance

Regressed Lens - Performance Data

Optic		1		Init	ial Delivere	Ltt: an an	Input	Estd. L70				
Distribution	Reflector Finish	- Lamp Power	30K8	30K9	35K8	35K9	40K8	40K9	50K8	Efficacy (lm/W)	Power (W)	LED Life (hrs)
		12L	1,233	1,031	1,233	1,043	1,282	1,043	1,310	70 - 90	15	80,000
	CS	22L	2,018	1,688	2,018	1,708	2,099	1,708	2,144	70 - 89	24	85,000
	CS	33L	2,924	2,445	2,924	2,475	3,041	2,475	3,107	70 - 89	35	70,000
		55L	5,217	4,362	5,217	4,415	5,425	4,415	5,543	70 - 89	62	75,000
	CSS —	12L	1,085	907	1,085	918	1,128	918	1,152	62 - 79	15	80,000
10/		22L	1,776	1,485	1,776	1,503	1,847	1,503	1,887	62 - 79	24	85,000
W		33L	2,573	2,152	2,573	2,178	2,676	2,178	2,734	61 - 78	35	70,000
		55L	4,590	3,838	4,590	3,885	4,774	3,885	4,877	62 - 79	62	75,000
		12L	1,176	984	1,176	995	1,223	995	1,250	67 - 85	15	80,000
		22L	1,926	1,610	1,926	1,630	2,003	1,630	2,046	67 - 85	24	85,000
	FW	33L	2,790	2,333	2,790	2,362	2,902	2,362	2,965	67 - 85	35	70,000
		55L	4,978	4,163	4,978	4,213	5,177	4,213	5,289	67 - 85	62	75,000

Sample Ordering Information

(EX: MDL6-R-2FW-22L-40K8-W-CSS-T-RIG6-DV-DIM1)

					ROUGH-IN						
Finish Lamp Power La	amp Color	Distribution	Reflector Finish	Flush Lens Type	Rough-In	Input Voltage	Driver Type	Options			
					RIG	6					
Li	amp Color				Rough-I	n					
3	0K8 3	000K / 80 CRI m	in.		RIG6 6	" Rough-In					
rs - IP64) 30	0K9 3	000K / 90 CRI m	in.			-					
IP65) 3:	5K8 3	500K / 80 CRI m	in.		Input Vo	oltage					
3'	5K9 3	500K / 90 CRI m	in.		DV 12	20-277V, 50/60Hz					
4	0K8 4	000K / 80 CRI m	in.		347 † 34	47VAC, 60Hz					
t White 40	0K9 4	000K / 90 CRI m	in.								
50	0K8 5	000K / 80 CRI m	in.		Driver T	vpe					
Vhite							0				
vith 4B Brushed Finish D	istribution	1									
	/I N	1edium									
W	V V	/ide				,					
W	VW* V	/all Wash			Options						
					LÉL Er	mergency Battery Back	up with Remote	Test Switch			
R	eflector Fi	nish									
C						Tr · · · ·					
					* Availa	ble with CSS reflector f	inish only				
-	cicai	p 2 carar						LEL option			
F,	Flush Lens Type (n/a Regressed Trim Style)					▲ Must be installed with a minimum 24" on-center spacing,					
т.											
	170	agii iiiipac					cicaranice above				
t	L 33 Pers - IP64) 3 3 Pers - IP65) 3 3 Pers - IP65) 3 3 Pers - IP64) 3 3 Pers - IP65) 3 3 P	Lamp Color 30K8 3 3 5K9 3 40K8 4 40K9 4 50K8 5 5	Lamp Color	Lamp Color 30K8 3000K / 80 CRI min. 30K9 3000K / 90 CRI min. 35K8 3500K / 80 CRI min. 35K9 3500K / 80 CRI min. 40K8 4000K / 90 CRI min. 40K9 4000K / 80 CRI min. 50K8 5000K / 80 CRI min. Vhite vith 4B Brushed Finish M Medium W Wide WW* Wall Wash Reflector Finish FW Flat White CS Clear Specular	Lamp Color	Company Color Distribution Reflector Finish Flush Lens Type Rough-In	Finish Lamp Power Lamp Color Distribution Reflector Finish Flush Lens Type Rough-In Input Voltage RIG6 Lamp Color 30K8 3000K / 80 CRI min. 30K9 3000K / 90 CRI min. 35K8 3500K / 80 CRI min. 35K9 3550K / 80 CRI min. 40K8 4000K / 80 CRI min. 40K8 4000K / 80 CRI min. 40K9 4000K / 90 CRI min. 50K8 5000K / 80 CRI min. 60K9 4000K / 90 CRI min. 70K9 40K9 4000K / 90 CRI min. 70K9 40K9 4000K / 90 CRI min. 70K9 40K9 40K9 40K9 40K9 40K9 40K9 40K9 4	Finish Lamp Power Lamp Color Distribution Reflector Finish Flush Lens Type Rough-In Input Voltage Rough-In RIG6 Rough-In RIG6 6" Rough-In Righ-In RIG6 6" Rough-In Rig6 6" Ro			

DUTICH IN

MedMaster™ 6" Regressed Downlights...

MedMaster™ M4DL6 for Surgical Suites

- Delivered lumen range: 880-5,543 lm
- Input Power: 15-62W
- CCT: 3000K, 3,500K, 4,000K, 5,000K
- CRI: 80 or 90
- Conductive emissions controlled per MIL-STD-461F
- Aluminum, stainless or cold-rolled steel trim ring
- Available with Indigo-Clean Technology

《Indigo-Clean™

** SGS Lab Report# - 09S17053798. Contact manufacturer for a copy of this report.

Indigo-Clean® MDLIC6 Downlight Switchable: White Ambient Mode

and Indigo Disinfection Mode

- Delivered lumen range: 1,515-2,050 lm
- Input power: 29-40W
- CCT: 3000K, 3500K, 4000K, 5000K
- Continuous environmental disinfection
- Sporicidal Proven to kill 70% of *C.diff* in 24 hrs.**
- Provided IC75 occupancy sensor switches automatically to max disinfection mode when room is unoccupied
- High performance LEDs deliver high visual acuity

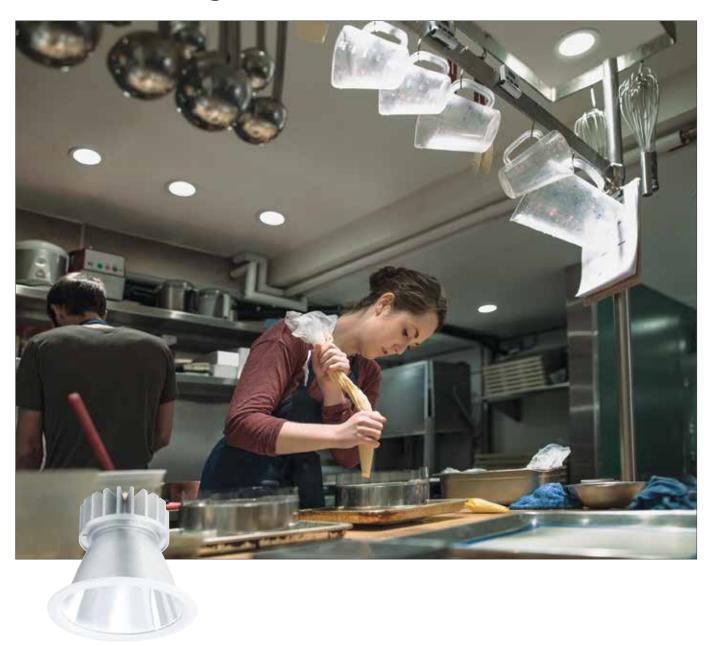
...for Healthcare Applications

MedMaster™ MRIDL6 for MRI Suites

- Delivered lumen range: 655-2,953 lm
- Input Power: 16-37W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90
- Non-ferrous construction
- 24V DC
- RF-EMI emissions compliant

MedMaster[™] MDL6 for Healthcare **Environments**

- Delivered lumen range: 768-5,543 lm
- Input Power: 15-62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90
- Die-cast aluminum, cold-rolled steel or stainless steel trim ring
- Wall-wash option
- Available with Indigo-Clean Technology & Tunable White Technology



EnviroPro[™] 6" Regressed Lens Downlight for Food Processing

EnviroPro™ EPDL6 for Food Processing

- Delivered lumen range: 880-5,543 lm
- Input Power: 15-62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90
- · Stainless steel trim ring
- Wall-wash option

MedMaster 4" Sealed Downlights for Healthcare Applications

Kenall's 4" downlights provide a targeted design aesthetic with your choice of a smaller round or square aperture. Their tighter beam spread is ideal to highlight task areas, as a chart light, or for use over a nurses' station.

MedMaster™ MDL4 for Healthcare **Environments**

- Delivered lumen range: 983-2,536 lm
- Input Power: 16-31W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80, 90
- Available with Indigo-Clean Technology & Tunable White Technology

MedMaster M4DL4 for Surgical

- Delivered lumen range: 983-2,536 lm
- Input Power: 16-31W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80, 90
- Available with Indigo-Clean Technology & Tunable White Technology

MedMaster MRIDL4 for MRI Suites

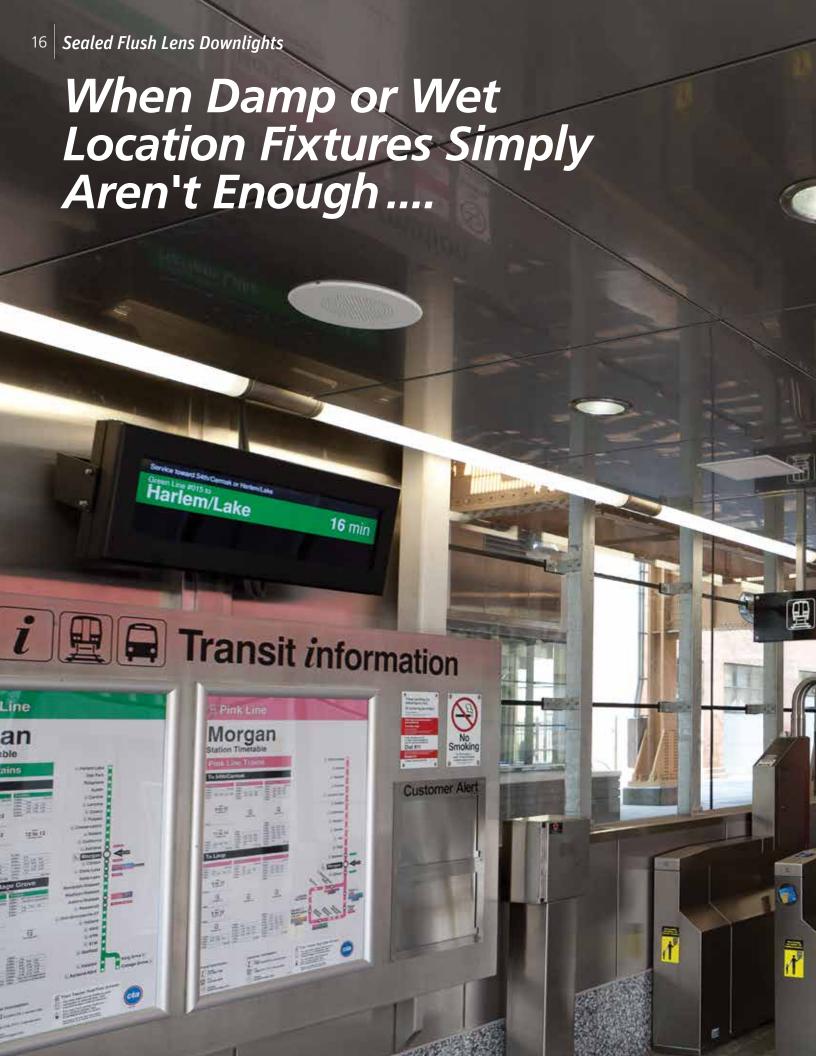
- Delivered lumen range: 930-1310 lm
- Input Power: 15W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80, 90

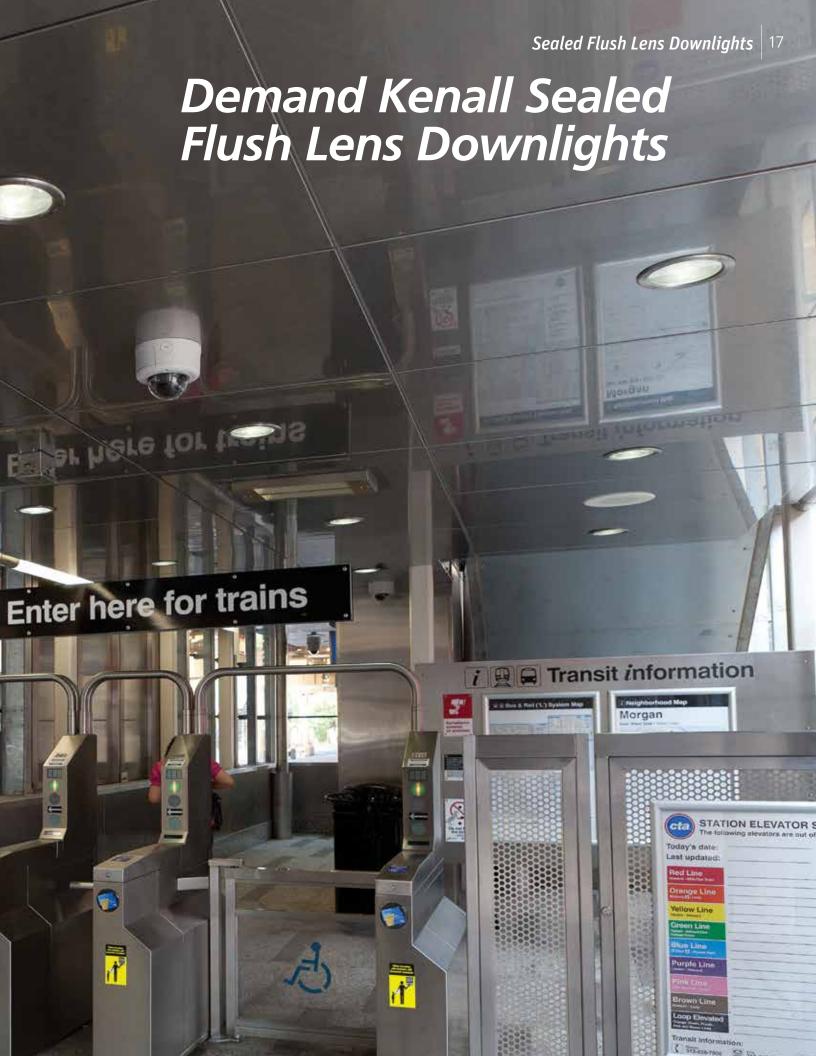
MedMaster MDL4S for Healthcare **Environments**

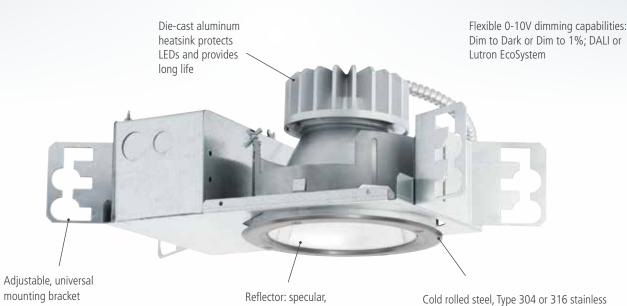
- Delivered lumen range: 1,046-2,640 lm
- Input Power: 16-31W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80, 90
- Available with Indigo-Clean Technology & Tunable White Technology

MedMaster M4DL4S for Surgical Suites

- Delivered lumen range: 1,046-2,640 lm
- Input Power: 16-31W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80, 90
- Available with Indigo-Clean Technology & Tunable White Technology


MedMaster MRIDL4S for MRI Suites


- Delivered lumen range: 990-1,357 lm
- Input Power: 15W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80, 90



Flush Lens Downlights, Designed for Performance and Long Life

With features that include sealed lenses and stainless steel or anti-microbial finished trim rings, Kenall's flush lens, sealed downlight series has been designed to provide protection from contaminants while also withstanding rigorous cleaning protocols.

semi-specular or white

Suggested Applications

Healthcare

Behaviorial Health

High Abuse

Food Processing

healthcare applications.

steel and die-cast aluminum trim ring options. Antimicrobial finish standard for

Transportation

Sealed Enclosure

Providing Exceptional Performance

Flush Lens - Performance Data

Optic			Initial Delivered Lumens, By Lamp Color								Input	Estd. L70				
Distribution	Reflector Finish	Lens Type	- Lamp Power	30K8	30K9	35K8	35K9	40K8	40K9	50K8	Efficacy (lm/W)	Power (W)	LED Life (hrs)			
			12L	1,153	964	1,153	976	1,199	976	1,225	66 - 84	15	80,000			
		Т	22L	1,888	1,578	1,888	1,597	1,963	1,597	2,006	66 - 84	24	85,000			
		'	33L	2,735	2,287	2,735	2,314	2,844	2,314	2,906	65 - 83	35	70,000			
	CS		55L	4,879	4,079	4,879	4,129	5,074	4,129	5,184	66 - 84	62	75,000			
	CS		12L	1,180	986	1,180	998	1,227	998	1,253	67 - 86	15	80,000			
		G	22L	1,932	1,615	1,932	1,635	2,009	1,635	2,052	67 - 86	24	85,000			
		d	33L	2,799	2,340	2,799	2,369	2,911	2,369	2,974	67 - 85	35	70,000			
			55L	4,993	4,175	4,993	4,225	5,193	4,225	5,305	67 - 86	62	75,000			
		T G	12L	978	818	978	828	1,017	828	1,039	56 - 71	15	80,000			
			22L	1,602	1,339	1,602	1,356	1,666	1,356	1,702	56 - 71	24	85,000			
			33L	2,321	1,941	2,321	1,964	2,414	1,964	2,466	55 - 70	35	70,000			
W	CSS		55L	4,141	3,462	4,141	3,504	4,306	3,504	4,399	56 - 71	62	75,000			
	C33		12L	1,001	837	1,001	847	1,041	847	1,064	57 - 73	15	80,000			
			22L	1,639	1,371	1,639	1,387	1,705	1,387	1,742	57 - 73	24	85,000			
			33L	2,375	1,986	2,375	2,010	2,470	2,010	2,524	57 - 72	35	70,000			
			55L	4,238	3,543	4,238	3,586	4,407	3,586	4,502	57 - 73	62	75,000			
						12L	1,084	906	1,084	917	1,127	917	1,152	62 - 79	15	80,000
			т	22L	1,775	1,484	1,775	1,502	1,846	1,502	1,886	62 - 79	24	85,000		
			33L	2,572	2,150	2,572	2,176	2,675	2,176	2,732	61 - 78	35	70,000			
	FW		55L	4,588	3,836	4,588	3,883	4,771	3,883	4,875	62 - 79	62	75,000			
	rvv		12L	1,109	928	1,109	939	1,154	939	1,179	63 - 81	15	80,000			
		G	22L	1,817	1,519	1,817	1,537	1,889	1,537	1,930	63 - 80	24	85,000			
		G .	33L	2,632	2,201	2,632	2,227	2,737	2,227	2,796	63 - 80	35	70,000			
			55L	4,695	3,926	4,695	3,974	4,883	3,974	4,989	63 - 80	62	75,000			

Sample Ordering Information

(EX: EPDL6-FF-5FW-22L-40K8-W-CSS-T-RIG6-DV-DIM1)

TRIM						KOUGH-IN				
Model	Trim Style Trim Finish Lamp Power	Lamp Color	Distribution	Reflector Finish	Flush Lens Type	Rough-In	Input Voltage	Driver Type	Options	
EPDL6						RIG6		_		
Trim Style		Lamp Cole	or			Rough-In				
	essed Lens (IP64)	30K8	3000K / 80 CRI mi	n.		RIG6 6" F	Rough-In			
FF Flush	Lens (With Fasteners - IP65)	30K9	3000K / 90 CRI mi	n.			,			
NF Flush	Lens (Without Fasteners - IP64)	35K8	3500K / 80 CRI mi	n.		Input Volt	age			
		35K9	3500K / 90 CRI mi	n.		DV 120	-277V, 50/60Hz			
Trim Finish	1	40K8	4000K / 80 CRI mi	n.		347* 347	VAC, 60Hz			
DCFW Die	e-Cast Aluminum in Flat White	40K9	4000K / 90 CRI mi	n.						
	and NF Trim Style)	50K8	5000K / 80 CRI mi	n.		Driver Typ	e			
5BR Ty	pe 304 Stainless Steel with 4B Brushed Finish					DIM1 0-	·10V Dimming to 19	%		
5FW Typ	pe 304 Stainless Steel in Flat White	Distribution				DALI Dimming to 1%				
		M	Medium			ECO1 Lu	ıtron EcoSystem®			
Lamp Pow		W	Wide							
	12 Watt LED					Options				
	22 Watt LED	Reflector					rgency Battery Back	cup with Remote	Test Switch	
	33 Watt LED		White				& Holder			
55L*▲	55 Watt LED		ır Specular			CCEA CCE	A Approved			
		CSS Clea	ır Semi-Specular							
		Flush Lens	Tyne			* N/Δ w/it	h DALI or ECO1 Driv	ver Tyne N/A with	LEL ontion	
			' Clear High-Impact	Acrylic			installed with a mi			
			' Clear Polycarbona				n wall, and have 3"			
		//0	y carbona			Trim/Ho	,			
						.11111/1101	9			

Sealed Flush Lens Downlights Kenall 6" Sealed, Flush Lens, Healthcare Downlights

MedMaster™ M4DL6 for **Surgical Suites**

- Delivered lumen range: 794-5,184 lm
- Input Power: 15 62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90 min
- Conducted emissions controlled as per MIL-STD-461F
- Available with Indigo-Clean Technology

MedMaster[™] MDL6 for Healthcare Environments

- Delivered lumen range: 697-5,184 lm
- Input Power: 15 62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90 min
- Wall-wash option
- · Available with Indigo-Clean Technology & Tunable White Technology

Indigo-Clean® MDĽIC6 Downlight

- Delivered lumen range: 1,384-1,873 lm
- Input Power: 29 40W
- CCT: 3000K, 3500K, 4000K, 5000K
- Continuous environmental disinfection
- NSF2 listing supports ease of cleanability

MedMaster™ MRIDL6 for **MRI Suites**

- Delivered lumen range: 591-2,624 lm
- Input Power: 16-37W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90 min
- Non-ferrous construction
- 24V DC
- RF-EMI emissions compliant

MedMaster[™] BHDL6 for Behavioral Health **Environments**

- Delivered lumen range: 715-5,305 lm
- Input Power: 15-62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90 min
- Tamper-proof fasteners
- Wall-wash option
- Available with Indigo-Clean Technology & Tunable White Technology

SimpleSeal™ CDL6 for Cleanroom and **Containment Applications**

- Delivered lumen range: 794-5,305 lm
- Input Power: 15-62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90
- Available with Tunable White Technology

EnviroPro™ EPDL6 for **Food Processing**

- Delivered lumen range: 794-5,305 lm
- Input Power: 15-62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90

LuxTran[™] TDL6 for Transit/ **Transportation Applications**

- Delivered lumen range: 950–5,305 lm
- Input Power: 15-62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80

Millenium™ HADL6 for High **Abuse Applications**

- Delivered lumen range: 715-5,305 lm
- Input Power: 15-62W
- CCT: 3000K, 3500K, 4000K, 5000K
- CRI: 80 or 90
- Available with Indigo-Clean Technology

Kenall's luminaires are expertly designed in our state-of-the-art, vertically integrated, static-controlled manufacturing facility in Wisconsin. This enables us to provide tight control over the entire development process from fixture design and engineering to full-fledged metal fabrication, paint, assembly and shipping. We also take great care in sourcing only the highest-quality components to assure optimal product performance.

Our products comply with the Buy American Act: manufactured in the United States with more than 50% of the component cost of US origin.

Listings and Certifications

Multi-use downlights must satisfy a large number of demanding lighting and environmental requirements. Please refer to specific listings within each section of this guide to determine appropriate product listings.

ETL—A product bearing the ETL Listed Mark is determined to have met the minimum requirements of prescribed product safety standards as certified by a Nationally Recognized Testing Laboratory (NTL). The mark also indicates that the manufacturer's production site conforms to a range of compliance measures and is subject to periodic follow-up inspections to verify continued conformance.

IP64— UL Certified IP64 per IEC 60598 ensures that the enclosure is dust-tight and protected against splashing water without any harmful effects.

IP65 — UL Certified IP65 per IEC 60598 ensures that the enclosure is dust-tight and protected against jet streams of water from any direction without any harmful effects.

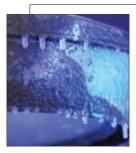
NSF2 — An NSF2 Listing denotes that the luminaire has been evaluated for corrosion resistance, cleanability and the ability of exposed material to withstand normal wear. This supports the infection control standards established by healthcare facilities as it indicates that the luminaire is easy to sanitize.

MIL STD 461F — Military Standards testing measurements cover both radiated and conducted electromagnetic emissions in addition to maximum allowable amounts of emitted energy based on both frequency range and field strength. Luminaires meeting MIL STD 461F pose the lowest possible likelihood of causing EMI-related issues.

CCEA Approved—The City of Chicago Environmental Air (CCEA) rating ensures that the luminaire is inherently airtight. Wiring and/or branch circuit terminations are sealed off and gasketed from the plenum air space. This listing ensures that the luminaire is sealed to limit air flow from the room side to the plenum.

ICT—Indicates white, ambient Kenall luminaires using Indigo-Clean Technology, which kills harmful bacteria on-demand, including Staph, such as MRSA.

Tunable White—Tunable white technology enables the user to independently control both color temperature and intensity of light within a given application. This provides the ability to change the color of light from warm to neutral to cool in appearance, over time, based on the needs of the occupant or the space.



Peace of Mind Guarantee—Kenall's High Abuse luminaires are designed and built to take exceptional physical punishment. When installed according to our instructions, Kenall will repair or replace any unit rendered inoperable due to physical abuse for the life of the product installation.

State-of-the-art, certified testing facility

Kenall is equipped with a state-of-the-art certified safety laboratory, providing comprehensive in-house testing capabilities:

Thermal Testing

Cold Weather Testing

High Temperature Testing

Photometrics Testing

Goniophotometer

Ingress Testing

Solids and Particulates Testing

Water Ingress Testing

26 | Lighting Challenging Environments

Kenall offers luminaires designed according to industry best practices and certified performance standards in each market segment we serve. From high abuse fixtures with an exclusive Peace of Mind Guarantee® against breakage and healthcare fixtures sealed for infection control, to sealed enclosure fixtures that comply with stringent military standards for RFI/EMI and food processing fixtures that carry mission critical NSF, NEMA and IP ratings, our fixtures are designed with your specific needs in mind.

Guaranteed against breakage for the life of the installation.

Main Applications

- Schools & Universities
- Public environments
- Military
- & stairwells

Engineered to the specialized demands of healthcare environments with particular attention to cleanability and infectious control.

Main Applications

- Patient rooms
- Surgical suites
- MRI
- Labs

One-piece, seam-welded enclosures for containment, controlled and sealed spaces.

Main Applications

- Pharmaceutical & research labs
- Cleanrooms
- Corrosive environments
- Hazardous locations

Sealed enclosure lighting for hazardous and extreme industrial applications

Main Applications

- Warehouses
- Manufacturing
- Natatorium
- Cold storage

Lighting Challenging Environments

Whether you're lighting a healthcare facility and need fixtures that support effective infection control and cleanability, or a tunnel, transit platform or parking facility that calls for features like corrosion-, shock- and vibration-resistance, Kenall can help at every turn. And for dependable task lighting that requires environmental integrity and versatility, or emergency exit lighting that meets life safety codes, you can depend on Kenall.

Heavy gauge, welded enclosures to deter even the most determined attempts to destroy, enter or vandalize.

Main Applications

- Cells
- Common areas
- Behavioral health
- Dayrooms

Meeting the specialized demands of transportation-related structures for high performance, corrosion resistance and serviceability.

Main Applications

- Tunnel & underpass
- Platform & depot
- Parking deck & surface lot
- Bridges

High efficiency LED, modular undercabinet lighting for professional spaces.

Main Applications

- Nurses stations
- Labs/MRI suites
- University dorms & administration areas
- Military/Government

High-abuse, extreme-environment LED exit and emergency egress lighting.

Main Applications

- Schools & Universities
- Recreational
- Sealed & correctional environments
- Outdoor/cold weather/extreme conditions

10200 55th Street Kenosha, WI 53144 Tel: 262-891-9700 www.kenall.com

©2017 Kenall Mfg.Co. All rights reserved. L10045-082018